
Machine Learning with Python: From Linear Models to Deep
Learning (6.86x) review notes.

David G. Khachatrian

October 18, 2019

1 Preamble

This was made a while after having taken the course. It will likely not be exhaustive. It may also include
some editorializing: bits of what I believe are relevant observations and/or information I have come across.

2 Motivation

2.1 Prediction vs. Estimation
What goal does machine learning have, and how does that differ from the goal of econometrics? Machine
learning’s goal (in supervised learning) is prediction (ŷ) of as-yet-unobserved outputs, while econometrics’s
goal is estimation (θ̂) of the underlying mechanisms of a process (which then produce outputs y). In pre-
diction, we are not concerned with accurately representing the "black box" that is the world; we only care
whether we can the outputs of the black box. Meanwhile, estimation attempts to describe the components
of the black box (using knowledge of the process and the black box’s outputs as a guide).

2.2 Setup
We have a space/class of functions H, individual functions/models h ∈ H, some inputs Xi, some objec-
tive function J. The goal is to find an h that minimizes the objective function, given the data J(h, Xi). In
most cases, there is no closed-form solution for h. Instead, we choose a suitably flexible/complex form for
hθ , then iteratively update the parameters θ that comprise hθ to move toward a minimizer of J with func-
tion/model hθ∗ .

In supervised learning, the individual "unit of input" to h are tuples (Xi, Yi). In unsupervised learning, the
unit of input is simply a singleton Xi.

Usually (particularly when considering supervised models), J contains a term that penalizes the model
from not predicting the target values for each Xi correctly, and a term to punish choosing a model that’s
"overly complex":

J(θ, Xi) = L(θ, Xi) + λR(θ)
= (loss; penality for inaccurate predictions given the data) + λ× (regularization; penalty for a complex model)

This is meant to strike a balance in the bias/variance tradeoff. Complex models can fit a given sample Xi
perfectly, but will change a huge amount if it were given a different sample Xj. The complex model shows
high variance. Meanwhile, an overly simple model will have predictions that are not useful (either far from
the target variable in supervised learning, or unactionable results in unsupervised learning). Meaning,

1

overly simple models have high bias. The regularization parameter λ controls the balances between loss
and regularization. The regularization term can be thought of as representing a prior belief (in the Bayesian
sense) on a useful form for h (see the "Fundamentals of Statistics" notes for more).

For much of this course, we focus on supervised learning. There are then two main subtypes: classification
and regression. In classification, we map inputs to a discrete output space of finite cardinality (isomorphic to
a subset of the whole numbers): h : X → Y; Y ⊆ W, |Y| < ∞. In regression, we map inputs to a continuous
output space (isomorphic to the real numbers): h : X → Y; Y ⊆ R. (If Y is n-dimensional, the output spaces
are subsets of Wn and Rn.)

3 (Linear) classifiers.

A way of describing linear classifiers is where we choose a decision boundary,

θ · x + θ0 = 0

Then we can form a binary classifier by taking:

h(x, θ, θ0) = sign(θ · x + θ0)

(Note that θ · x + θ0 is the same as θaug · xaug where θaug =
[
θ0 − θ −

]
and xaug =

[
1 − x −

]
.)

3.1 Perceptron algorithm
The perceptron algorithm is a way of finding a linear classifier if the data are linearly separable – if they aren’t
separable, the algorithm never converges! It works according to the following logic: (1) See whether my
current prediction for X matches its actual label Y. (2) If they don’t match, then add (a signed version of) X
to my parameter θ. (3) Repeat until convergence/no more mistakes are made throughout the entire dataset.

In pseudocode:
TODO

3.2 Maximum margin classifiers.
Geometrically, the decision boundary is a hyperplane that cuts the domain of X into two halves: the parts
that will be classified as +1 and −1. θ itself is a vector normal to the hyperplane: the "quickest" way to
go from one half of the plane to the other would be to change X along the direction of θ. The magnitude
of θ, ‖θ‖, describes the "sensitivity" of the classifier to changes in x: the smaller ‖θ‖ is, the less sensitive
the classifier is to small changes in x. The "actual" distance between a point and the decision boundary is
directly proportional to its "score" and inversely proportional to ‖θ‖:

d =
|θ · x + θ0|
‖θ‖

One can consider a classifier that attempts to maximize d for the provided data (with the data being put
on the right side of the decision boundary). This is the same as finding a θ with minimal norm ‖θ‖.

In cases where a point could be misclassified, we can consider a hinge loss:

Losshinge(yi(θ · xi + θ0)) = Losshinge(z) = min(0, 1− z)

In this case, we "push" our θ so that yi(θ · xi + θ) ≥ 1. The hyperplanes corresponding to θ · xi + θ = ±1
are the margin boundaries; we try to separate the margin boundaries as much as possible.

2

4 Optimization method: (Stochastic) Gradient Descent.

How do we actually update the parameters of our model when it’s necessary? We use the gradient. The
gradient captures the "direction of steepest ascent" of a function. So, more specifically, ∇θ J(θcur) will say
"at the input θcur, which way should I go to maximally increase J?" We want to minimize J, so we step in the
opposite direction that the gradient shows:

θ ← θ − η
∂J
∂θ′

(θ)

θ ← θ − η∇θ′ J(θ)

where η is the step size (so we don’t jump too much – linear approximations of functions only work well
very close to where the approximation is centered).

To be clear, each coordinate is updated "independently" of the others, in the sense that the update for θj

depends on the partial derivative ∂J
∂θj

.

In regular gradient descent, you run through your entire training set, average the computed gradient
per sample, and update the parameters with this averaged gradient. This is guaranteed to monotonically
improve the objective function, but it is slow (n calculations for 1 update).

Often you instead perform stochastic gradient descent, or more specifically minibatch gradient descent,
where you update after only averaging the gradient across k � n samples (a "minibatch"). This doesn’t
always necessarily improve the objective function; we’re choosing a subset of our full dataset, so there’s
randomness built in (k → n decreases stochasticity but increases time cost; k → 1 increases stochasticity
but decreases time cost). But we gain a great deal of speed, and empirically, the minibatch method of op-
timization tends toward a minimizing point using fewer runs through a dataset than the "non-stochastic"
method. (When k = 1, our "minibatch" isn’t really a batch, so we just call it "stochastic gradient descent".)

For theoretical guarantees, we usually want the following properties for η (where, in the following, i
represents the i’th parameter update):

1. ∑∞
i=1 ηi = ∞. There is always enough "push" behind huge accumulations of updates that you could

technically reach any point in function space.

2. ∑∞
i=1 η2

i < ∞. The variance of our parameters will decrease over time. (So while it could technically
reach anywhere, practically it will be strongly localized after a large enough i.)

3. (Square-summability implies that limi→∞ ηi = 0. This reinforces that idea that eventually, the model
is localized near a single point.)

ηt =
1

1+t satisfies these requirements.

5 Nonlinear classifiers and the kernel trick.

Our earlier linear classifier looked like the following:

h(x) = sign(θ · x + θ0)

Some relevant observations:

1. Our decision boundary is currently linear. What if the "correct" decision boundary is nonlinear?

2. The dot-product θ · x is a type of inner product (〈θ, x〉), which can generally be interpreted as a measure
of similarity between the two arguments.

3

5.1 Feature representations.
What if we want nonlinear decision boundaries? We can "augment" our data samples into richer feature
vectors: x → φ(x). For example, we can transform a pair of values (x1, x2) to the following: (x1, x2) 7→
[1, x1, x2, x1x2, x2

1, x2
2, tanh(x1 + x2)]. We can now train a linear classifier on this augmented feature vector,

and perhaps we find that the decision boundary is very simple in this space, just x1x2 = c. This is a simple
hyperplane in our augmented space (which is linear); however, in the original (x1, x2) space, the decision
boundary is nonlinear.

This seems like magic, but remember: we’ve actually still just trained a linear classifier, just in a larger
input space. It just "looks" nonlinear when we project the boundary back down to a smaller subspace. (In
neural networks, we basically stack a bunch of these classifiers/filters on top of each other.)

5.2 The kernel trick.

Explicitly computing these feature representations φ(x) can be costly! (Try calculating explicitly the infinite
sequence: x 7→ [1, x, x2, x3, · · ·].) Conveniently, in many algorithms, they don’t show up on their own; they
only show up as part of a dot product (e.g., θ · x). They only show up in the context of measuring its similarity
with some other object. So we don’t need φ(x) explicitly, we just need a function

Kφ : (X1, X2)→ R; Kφ(x1, x2) = 〈φ(x1), φ(x2)〉
where Kφ is symmetric K(x1, x2) = K(x2, x1) and K(x, x) ≥ 0. Such a function, which maps the similar-

ities between two points according to a specific representation of the two points, is called a kernel function,
and sneaking in Kφ to avoid costly computations is called the kernel trick.

Every kernel function is implicitly a dot product between a specific representation of its inputs. For
example, for K(x1, x2) = x2

1x2
2 + cos(x1)cos(x2) = φ(x1) · φ(x2), where φ(x) = [x2, cos(x)]. Because of

their structure, you can add, multiply, divide, etc different kernel functions and still obtain valid kernel
functions! (Kernel functions are very closely related to covariance matrices; look into the Mercer Theorem
for more. They are also essentially the idea behind Multidimensional Scaling (MDS).)

5.2.1 Kernel perceptron algorithm.

Kernel functions can immediately find use in the perceptron algorithm. The parameter θ is always literally
just a linear combination of the data points (add 1 to a datapoint’s weight whenever it’s misclassified), so
you can rewrite the classification comparison as an inner product between two datapoints – which you can
then rewrite using a kernel function of your choosing!

Pseudocode:
TODO
Though it isn’t as obvious, the maximum margin classifier turns out to be determined by only a specific

subset of points (those which touch the margin boundaries), and so can similarly be rewritten in terms of
kernel functions.

Pseudocode:
TODO

6 Low-rank matrix factorization

Given a matrix (n × p)with missing entries X, you want to impute the missing values in a "principled"
manner. An idea is to assume that there are actual k latent factors that determine the values of X.

Let’s use the idea of n users having rated some of p movies. We assume that X = UVT where each row
of U(n× k) represents each user’s "affinity" toward some intrinsic factors in movies, and each column of
VT(k× p) represents the amount each factor is present per movie. One could think of the latent factors as

4

something like "level of humor", "does it contain famous actors?" (though even these categorical factors will
be "soft") – in reality, it will likely be the case that many human-interpretable concepts will be mixed into
one "factor".

So our assumption is that

X = UVT

and the corresponding objective function is

J = ∑
(a,i)∈D

(Yai − (UVT)ai)
2

2
+

λ

2

(
∑
a,k

U2
a,k + ∑

a,k
V2

a,k

)
where D is the set of coordinates in the matrix X that we actually know, and Yai is that value.

How do we actually optimize this function? By performing alternating coordinate descent. First optimize
with respect to the parameters of U while holding the parameters of V fixed, i.e., U ← U − η∇U J(U; V).
Then hold U fixed and optimize with respect to V. Repeat ad nauseum until convergence.

7 Neural networks.

Neural networks are, in a way, stacks of nonlinear "classifier" units built on top of each other.

Each "neuron"/unit of a neural network takes as input a linear combination of the outputs of the layer
behind it, performs some nonlinearity on this linear combination, and emits the result as an output. In a
way, each layer forms a new feature mapping (of possibly different dimension) based on the previous layer,
~x → ~φ(x).

The "tricky" part when you want to train an entire neural network architecture, you’re changing the
weights of both the final layer that actually emits the final output (e.g., the label if the network is a clas-
sifier) and the weights for the "hidden" layers (everything between the input and the output). So you’re
optimizing the final classifier and the representation φ that classifier is acting on at the same time. How do
you manage to do both?

An important fact is that we assume that the nonlinearities applied at each unit do not ever change.1 So
if we describe a single unit of a layer as hi(zi), zi = Wi−1,ihi−1(zi−1) + b, we assume the form of hi is fixed,
so only Wi−1,i and b need updating. (If all the units in a layer perform the same nonlinearity, which many
models adhere to, then W is a matrix, while h, z, b are vectors.)

To emphasize, the "flow" of an input according to our conventions is hi−1 →linearcombination:(W,b) zi →nonlinearity:” f ”
hi.

7.1 Update method: Backpropagation (and SGD).
When it comes to updating individual values, we technically do the same thing as usual: use the partial
derivative and provide an update via, e.g., stochastic gradient descent.

wj ← wj − η
∂J

∂wj
(θ)

The real question is "How do you get the form of ∂J
∂wj

?" The answer: a whole lot of chain rule. You
"propagate" the error from the final output "back" to the parameter of interest – something like:

1 Differentiable architecture search now exists, but is quite computationally intensive, hard to train, and probably overkill for
whatever you’re considering.

5

∂J
∂wj

=
∂J
∂ŷ
× ∂ŷ

∂zk
× ∂zk

∂hk−1
× ∂hk−1

∂zk−1
· · · ×

∂hj

∂wj

This looks intimidating, but it makes a lot of sense if you look at the network pictorially. You take a path
from the output node to the target edge/node, and compute a partial derivative for every traversal you
make. More than one path that takes you there? Add together each path’s individual partial-derivative-
product-train. This is called backpropagation.

7.2 Model complexity/choice/convergence considerations.
It might seem like we can go overboard in having a super complex architecture – super deep (many layers),
super wide (many neurons per layer). This is true in the sense that a neural network could end up just
memorizing the data ("variance" in the bias-variance tradeoff). With proper regularization/a good objec-
tive function, there is actually a sense in which it’s "easier" to train a "good" model when it has enough
flexibility, in the sense that technically you would eventually get a model that reaches a minimizer. Consider
the objective function and imagine it visually – it’s sort of a bumpy mountain range, and we’re looking for
the deepest value. When you only have one axis you can move along ("left or right"; this would be a 1-D
parameter), then you can easily get "stuck" in a localized dip that isn’t the deepest valley. But if you had
a bunch of different ways to move "away" from a particular point, there is a higher chance that you can
escape the valley by following some axis, which means you can eventually maneuver your way to the true
deepest valley.

This analogy is not perfect, and it takes a well-formed objective function for an overly complex neural
network to train as we have described. Also, this does not consider the computational costs of training to a
minimizer – you’ll need more memory to hold the model, you’ll have to update many more weights per
parameter, etc. There are many practical considerations to consider besides eventual ability to reach the
objective function’s minimum; if you can get close enough in 1/100 the training time with a model that’s
1/1, 000, 000 the size, you’d probably go with that over the monolith.

7.3 Recurrent Neural Networks.
In recurrent neural networks (RNNs), we feed in a sequence of inputs, passing in the next entry in the input
sequence and an output/structure of the RNN (usually a hidden state) into the RNN. So we partially feed
the output of RNN back into itself for the next prediction. It is in this way that the RNN is "recurrent".
Backpropagation updates the internals of the RNN to maximize the separate components: hidden state,
output, etc. (Different architectures have different components. One of the better "classic" models is the
long short-term memory (LSTM) cell.)

7.4 Convolutional neural networks.
In convolutional neural networks (CNNs), we feed in information where there is some semblance of "prox-
imity" between parts of the input, and we expect that only "nearby" portions of a particular point in the in-
put are relevant for that point. We then have "filters" which slide along the input/layer, and each point gets
as its output a dot product with the filter (what is called a convolution, but is actually an cross-correlation of
the layer with the filter). Nonlinearities are applied in between "convolutions". Some layers include pooling,
where adjacent patches are summarized in some manner (usually max-pooling). Using backpropgation,
the weights on the filters are trained. (The number of filters is a pre-fixed architecture choice.)

The classic use-case for CNNs is just about anything to do with images.

8 Generative vs Discriminative Models

One can consider developing two different types of models:

6

1. "Given an example x, what is its likely target variable y?" This is something like f (y | x) and is called
a discriminative model – it "discriminates" whether an individual point is associated with any of the
possible target values y.

2. "Given a target variable y, what is the distribution of possible inputs x?" This is something like f (x | y)
and is called a generative model because you can generate "examples" of inputs that (according to the
model) are associated with y.

Depending on whether you’re more interested in "Which among the possible target values is my actual
input X most like?" (discriminative) or "What are other examples that seem to belong a target value Y?"
(generative), one type of model may be more useful than the other.

9 Unsupervised learning and Clustering

In unsupervised learning, we only have set of datapoints Xi and no "targets". Often, the goal is to find some
latent structure in the distribution of the dataset Xi. We have to decide what sort of structure to impose –
for clustering algorithms, how many clusters K should we have? It’s ideal if there is reason to know what a
reasonable value of K would be; one can also programatically decide K by imposing a regularization term to
the objective function of the algorithm for more complex models (e.g., the Bayesian Information Criterion).

9.1 K-means, K-medoids

In K-medoids and K-means, we define a distance measure between points dist(x1, x2). The algorithm in-
volves the following two steps (after randomly initially z1, · · · , zk): (1) Assign each xi to the closest cluster
Cj represented by zj. (2) Reassign a "best representative" such that ∑x∈Cj

dist(x, zj) is minimal.
The idiosyncrasies to each (according to this course):

• In K-means, dist(x, y) = ‖x− y‖2
2, and zj needn’t be an element of the dataset, so the optimal choice

of zj would be
∑x∈Cj

x

|Cj| .

• In K-medoids, dist(x, y) is free to vary, but zj must be an element of the dataset.

9.2 Gaussian Mixture Models and the Expectation-Maximization Algorithm
A Gaussian mixture model assumes that a datapoint X is generated in the following two-step process:

1. From a Mulinoulli distribution with parameters π1, · · · , πK, draw the output k.

2. Now based on the output k, draw from N(µk, σ2
k). This is X.

It turns out that optimizing this function by maximizing log-likelihood is not as straightforward as one
would hope: you have a ∑i(log

(
∑j · · ·

)
), which cannot be spooled out into a closed-form solution.

What we do is a bit of well-justified fudging-about: We change our objective function to ∑i ∑j(log · · ·).
It turns out that this provides an upper-bound for our actual objective function while also having a closed-
form solution. What we can then do is update our parameters to the optimum of our approximation, then
approximate again, etc until convergence. This will allow us to derive the update steps below.

How do we actually get to our optimum? We first fix the probabilities that each datapoint belongs to a
particular cluster (E-step), then we update our πj, µj, σ2

j (M-step), and alternate. More specifically, for the
E-step:

p(j | i) =
πjN(xi; µj, σ2

j)

∑j πjN(xi; µj, σ2
j)

7

Then for the M-step (assuming d-dimensional input x and that Σ = σ2 Id):

nj ←∑
i

p(j | i), πj ←
nj

n
, µj ←

∑i xi p(j | i)
∑i p(j | i)

, σ2
j ←

∑i p(j | i)
∥∥xi − µj

∥∥2
2

d ∑i p(j | i)

Note that Gaussian mixture models are a sort of "soft" version of K-means/K-medoids clustering.

10 Reinforcement Learning

In reinforcement learning, we reformulate our problem. Now, our algorithm will act as an agent acting in a
world with states s (where all relevant information is captured in s), potential actions a, and transition state
probabilities T(s, a, s′) = Pr[end up in state s′ | s, a). The agent gets "rewards" for performing certain ac-
tions in certain states R(s, a, s′), and the objective is to maximize the cumulative reward ∑t Rt. To incentive
the agent to prefer acting sooner rather than later, we can impose one (or both) of the following adjustments
to R:

• Finite Time-Horizon. After T steps, "the world ends"/the agent is no longer able to perform actions.

• Temporal discounting of rewards. A discount factor of γk is applied to a reward if it takes k time-steps
to perform the requisite state-action pair: Rt+k(s, a) = γkRt(s, a).

For ease of analysis, we only impose temporal discounting (and technically allow an infinite time hori-
zon – assuming R does not grow geometrically over time, the cumulative reward will remain finite because
the discount factor γ will send "distant" rewards to zero fast enough).

Technically, everything we have described so far can be modeled as a Markov decision process (MDP) and
solved exactly. In most reinforcement learning situations, a further issue is that the agent does not know R
and T ahead of time – it has to "explore" the world an perform different actions to determine R and T, while
at the same time "exploiting" the knowledge it has gained to try and maximize its cumulative reward. It’s
worth discussing the MDP a bit more, as it will help in the "unobserved" case.

10.1 Markov decision processes and the Bellman equations.
In the case of observed R and temporal discounting, we can define a value function associated with each
state V(s). V is a measure of "how good" a specific state is; we want to get to states with higher V. We can
also define a Q-value dependent on state and action Q(s, a), which measures "how good" a specific action is
at a particular state; we want to perform actions with the highest Q-value.

In general, if we knew the final values of Q, we could write:

V∗(s) = max
s

Q∗(s, a)

Q∗(s, a) = ∑
s′

T(s, a, s′)(R(s, a, s′) + γ max
a′

Q∗(s′, a′))

That is, "my utility if I could do if I’m at s and perform a = performing a, and depending on the state s′ I
end up, add the discounted utility I would get from performing the optimal action a′." These are called the
Bellman equations.

(This sort of "one-step-unrolled equivalence" is a type of convergence you can often find in Markov
chains. One can find the long-term visitation frequency of states in a Markov chain using the balance equa-
tions.)

This wording might suggest something like a policy π(s) – a function that says, given a state s, what the
optimal action a is:

8

π∗(s) = argmax
a

Q∗(s, a)

The great thing is, similar to Markov chain calculations, we can "unroll" these equations all the way to
t = 0. That is to say, we can iterate on our current best estimates for V or Q to get the next time-step’s
estimates, and we can repeat until convergence (at which point, we can determine an optimal policy π∗):

V∗(s) = max
s

Q∗(s, a)

Qk+1(s, a) = ∑
s′

T(s, a, s′)(R(s, a, s′) + γ max
a′

Qk(s′, a′))

10.2 RL: The unobserved case.
We know how to maximize cumulative reward in a fully observed case. What if we don’t know T and
R? We need to estimate these functions. More specifically, we’re interested in its expectation: EX [f (X)] =
∑x∈X p(x) f (x). One could try two approaches to estimation:

1. Model-based approach. We try to figure out the distribution of X and get p̂(x), then calculate the
expectation E[f (X)] ≈ ∑x∈X p̂(x) f (x). (The main drawback here is having to store and update all of
the information to compute p̂ for every state-action pair for R/T.)

2. Model-free approach. We use the Law of Large Numbers to our advantage and estimate E[f (X)] ≈
1
n ∑i f (xi) (where you have performed the state-action pair n times).

The model-free approach is often preferred for lower overhead costs.

How do you update? It could make sense to give more recent samples higher weight than older samples,
in which case you could use an exponentially weighted moving average (EWMA). The EWMA, in recurrence
relation form, is

x̄n = αxn + (1− α)x̄n−1

Applied to Q-value iteration, we have

Qk+1(s, a) = α× (R(s, a, s′) + γ max
a′

Qk(s′, a′)) + (1− α)Qk(s, a)

where the s, a, s′, R(s, a, s′) were sampled and Qk is the previous estimate.

How do you determine when to exploit the information you have and when to explore more to see if
you find something useful? You can "hardcode" exploration into the agent’s behavior. A simple approach
is the ε-greedy algorithm: At any given state s,

1. choose a completely randomly with probability ε

2. choose a := πk(s) ("greedily" based on gathered information) with probability 1 - ε

9

	Preamble
	Motivation
	Prediction vs. Estimation
	Setup

	(Linear) classifiers.
	Perceptron algorithm
	Maximum margin classifiers.

	Optimization method: (Stochastic) Gradient Descent.
	Nonlinear classifiers and the kernel trick.
	Feature representations.
	The kernel trick.
	Kernel perceptron algorithm.

	Low-rank matrix factorization
	Neural networks.
	Update method: Backpropagation (and SGD).
	Model complexity/choice/convergence considerations.
	Recurrent Neural Networks.
	Convolutional neural networks.

	Generative vs Discriminative Models
	Unsupervised learning and Clustering
	K-means, K-medoids
	Gaussian Mixture Models and the Expectation-Maximization Algorithm

	Reinforcement Learning
	Markov decision processes and the Bellman equations.
	RL: The unobserved case.

